In digital modulation, an analog carrier signal is modulated by a digital bit stream. Digital modulation methods can be considered as digital-to-analog conversion, and the corresponding demodulation or detection as analog-to-digital conversion. The changes in the carrier signal are chosen from a finite number of M alternative symbols (the modulation alphabet).
Fundamental digital modulation methods
These are the most fundamental digital modulation techniques:
- In the case of PSK, a finite number of phases are used.
- In the case of FSK, a finite number of frequencies are used.
- In the case of ASK, a finite number of amplitudes are used.
- In the case of QAM, a finite number of at least two phases, and at least two amplitudes are used.
In QAM, an inphase signal (the I signal, for example a cosine waveform) and a quadrature phase signal (the Q signal, for example a sine wave) are amplitude modulated with a finite number of amplitudes, and summed. It can be seen as a two-channel system, each channel using ASK. The resulting signal is equivalent to a combination of PSK an
In digital modulation, an analog carrier signal is modulated by a digital bit stream. Digital modulation methods can be considered as digital-to-analog conversion, and the corresponding demodulation or detection as analog-to-digital conversion. The changes in the carrier signal are chosen from a finite number of M alternative symbols (the modulation alphabet).
Fundamental digital modulation methods
These are the most fundamental digital modulation techniques:
- In the case of PSK, a finite number of phases are used.
- In the case of FSK, a finite number of frequencies are used.
- In the case of ASK, a finite number of amplitudes are used.
- In the case of QAM, a finite number of at least two phases, and at least two amplitudes are used.
In QAM, an inphase signal (the I signal, for example a cosine waveform) and a quadrature phase signal (the Q signal, for example a sine wave) are amplitude modulated with a finite number of amplitudes, and summed. It can be seen as a two-channel system, each channel using ASK. The resulting signal is equivalent to a combination of PSK and ASK.
In all of the above methods, each of these phases, frequencies or amplitudes are assigned a unique pattern of binary bits. Usually, each phase, frequency or amplitude encodes an equal number of bits. This number of bits comprises the symbol that is represented by the particular phase.
If the alphabet consists of M = 2N alternative symbols, each symbol represents a message consisting of N bits. If the symbol rate (also known as the baud rate) is fS symbols/second (orbaud), the data rate is NfS bit/second.
For example, with an alphabet consisting of 16 alternative symbols, each symbol represents 4 bits. Thus, the data rate is four times the baud rate.
In the case of PSK, ASK or QAM, where the carrier frequency of the modulated signal is constant, the modulation alphabet is often conveniently represented on a constellation diagram, showing the amplitude of the I signal at the x-axis, and the amplitude of the Q signal at the y-axis, for each symbol.
d ASK.
In all of the above methods, each of these phases, frequencies or amplitudes are assigned a unique pattern of binary bits. Usually, each phase, frequency or amplitude encodes an equal number of bits. This number of bits comprises the symbol that is represented by the particular phase.
If the alphabet consists of M = 2N alternative symbols, each symbol represents a message consisting of N bits. If the symbol rate (also known as the baud rate) is fS symbols/second (orbaud), the data rate is NfS bit/second.
For example, with an alphabet consisting of 16 alternative symbols, each symbol represents 4 bits. Thus, the data rate is four times the baud rate.
In the case of PSK, ASK or QAM, where the carrier frequency of the modulated signal is constant, the modulation alphabet is often conveniently represented on a constellation diagram, showing the amplitude of the I signal at the x-axis, and the amplitude of the Q signal at the y-axis, for each symbol.
No comments:
Post a Comment